Poly[ADP-Ribose] Polymerase-1 Expression Is Related To Cold Ischemia, Acute Tubular Necrosis, and Delayed Renal Function In Kidney Transplantation
نویسندگان
چکیده
UNLABELLED Cold ischemia time especially impacts on outcomes of expanded-criteria donor (ECD) transplantation. Ischemia-reperfusion (IR) injury produces excessive poly[ADP-Ribose] Polymerase-1 (PARP-1) activation. The present study explored the hypothesis that increased tubular expression of PARP-1 contributes to delayed renal function in suboptimal ECD kidney allografts and in non-ECD allografts that develop posttransplant acute tubular necrosis (ATN). MATERIALS AND METHODS Nuclear PARP-1 immunohistochemical expression was studied in 326 paraffin-embedded renal allograft biopsies (193 with different degrees of ATN and 133 controls) and in murine Parp-1 knockout model of IR injury. RESULTS PARP-1 expression showed a significant relationship with cold ischemia time (r coefficient = 0.603), time to effective diuresis (r = 0.770), serum creatinine levels at biopsy (r = 0.649), and degree of ATN (r = 0.810) (p = 0.001, Pearson test). In the murine IR model, western blot showed an increase in PARP-1 that was blocked by Parp-1 inhibitor. Immunohistochemical study of PARP-1 in kidney allograft biopsies would allow early detection of possible delayed renal function, and the administration of PARP-1 inhibitors may offer a therapeutic option to reduce damage from IR in donor kidneys by preventing or minimizing ATN. In summary, these results suggest a pivotal role for PARP-1 in the ATN of renal transplantation. We propose the immunohistochemical assessment of PARP-1 in kidney allograft biopsies for early detection of a possible delayed renal function.
منابع مشابه
Programmed necrosis in acute kidney injury.
Programmed cell death (PCD) had been widely used synonymously to caspase-mediated apoptosis until caspase-independent cell death was described. Identification of necrosis as a regulated process in ischaemic conditions has recently changed our understanding of PCD. At least three pathways of programmed necrosis (PN) have been identified. First, receptor-interacting protein kinase 3 (RIP3)-depend...
متن کاملInvolvement of peripheral benzodiazepine receptor in the oxidative stress, death-signaling pathways, and renal injury induced by ischemia-reperfusion.
The peripheral benzodiazepine receptor (PBR) is a critical component of the mitochondrial permeability transition pore, which is involved in the regulation of cell death. In the present study we investigated the role of PBR in the regulation of signaling pathways leading to apoptotic and necrotic damage and renal dysfunction in a rat model of ischemia-reperfusion. Renal ischemia-reperfusion led...
متن کاملPARP Inhibition Attenuates Acute Kidney Allograft Rejection by Suppressing Cell Death Pathways and Activating PI-3K-Akt Cascade
BACKGROUND Novel immunosuppressive therapy facilitates long term allograft survival, but acute tubular necrosis and ischemia-reperfusion during transplantation can compromise allograft function. These processes are related to oxidative stress which activates poly- (ADP-ribose) polymerase (PARP) contributing to the activation of cell death pathways. Here we raised the possibility that PARP inhib...
متن کاملEffect of picroside II on apoptosis induced by renal ischemia/reperfusion injury in rats
Renal ischemia and reperfusion (I/R) injury, which commonly occurs in kidney transplantation, is the leading cause of acute kidney injury. Picroside II possesses a wide range of pharmacological effects, including anti-apoptosis effects. In the present study, the ability of picroside II to attenuate apoptosis in a rat model of renal I/R injury was investigated. Sprague-Dawley rats were subjected...
متن کاملSpermidine is protective against kidney ischemia and reperfusion injury through inhibiting DNA nitration and PARP1 activation
Kidney ischemia and reperfusion injury (IRI) is associated with a high mortality rate, which is attributed to tubular oxidative and nitrative stresses; however, an effective approach to limit IRI remains elusive. Spermidine, a naturally occurring polyamine, protects yeast cells against aging through the inhibition of oxidative stress and necrosis. In the present study, spermidine supplementatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2009